
6 SUSY QCD Part II

6.1 Flat Directions (Classical Moduli Space)

Recall

Da = g(φ∗in(T a)m
n φmi − φ

in(T a)m
n φ

∗
mi) (6.1)

and the potential is:

V =
1
2
DaDa . (6.2)

Define

Dn
m ≡ 〈φ∗inφmi〉 (6.3)

D
n
m = 〈φin

φ
∗
mi〉 (6.4)

Dn
m and D

n
m are N × N positive semi-definite Hermitian matrices of rank

F . In a vacuum state we must have:

Da = T am
n (Dn

m −D
n
m) = 0 (6.5)

Since T a is a complete basis for traceless matrices, we must have

Dn
m −D

n
m = αI (6.6)

Dn
m can be diagonalized by an SU(N) gauge transformation

U †DU (6.7)

There will be at least N − F zero eigenvalues, while the rest are positive
semi-definite.

D =



v2
1

v2
2

. . .
v2
F

0
. . .

0


(6.8)
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where v2
i ≥ 0. In this basis D

n
m must also be diagonal, and it must also have

N − F zero eigenvalues. This tells us that α = 0, and hence that

D
n
m = Dn

m (6.9)

Dn
m and D

n
m are invariant under flavor transformations since

φmi → φmiV
i
j (6.10)

Dn
m → V ∗j

i 〈φ∗in〉〈φmi〉V i
j (6.11)

→ 〈φ∗jnφmj〉 = Dn
m (6.12)

Thus, up to a flavor transformation we can write

〈φ∗〉 = 〈φ〉 =



v1

. . .
vF

0 . . . 0
...

...
0 . . . 0


(6.13)

So we see that the D-term potential has flat directions eminating from the
zero energy vacuum at φ = 0, φ = 0, or in other words there is a space of
degenerate vacua. This space is refered to as a moduli space since there a
some massless fields (moduli fields) associated with it. As we change the
values of the vevs we move between physically different vacua with different
particle spectra.

At a generic point in the moduli space the SU(N) gauge symmetry is
broken to SU(N − F ).

6.2 SuperHiggs Mechanism?

Consider the simple case when v1 = v and vi = 0, for i > 1. Then the gauge
symmetry breaks from SU(N) to SU(N − 1) and the non-Abelian flavor
symmetry breaks from SU(F ) × SU(F ) to SU(F − 1) × SU(F − 1). The
number of broken gauge generators is N2−1−((N−1)2−1) = 2(N−1)+1.
A convenient basis of gauge generators for describing this broken gauge
theory is given by GA = X0, Xm

1 , Xm
2 , T a where A = 1, . . . , N2 − 1, m =

1, . . . , N−1, and a = 1, . . . , (N−1)2−1. The X’s are the broken generators
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while the T ’s are the unbroken SU(N−1) generators. The X’s are analogues
of the Pauli matrices:

X0 =
1√

2(N2 −N)


N − 1

−1
−1

. . .
−1

 (6.14)

Xm
1 =

1
2



0 . . . 0 1 0 . . . 0
0
...
0
1 0
0
...
0


(6.15)

Xm
2 =

1
2



0 . . . 0 i 0 . . . 0
0
...
0
−i 0
0
...
0


(6.16)

Where only the (1,m+1) and (m+1,1) components of Xm
1 and Xm

2 are non-
zero. We can also make raising and lowering operators:

X+m =
1√
2
(Xm

1 − iXm
2 ) (6.17)

X+m =
1√
2
(Xm

1 + iXm
2 ) (6.18)

X+m =
1√
2

(
0 . . . 0 1 0 . . . 0

0

)
(6.19)
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X−m =
1√
2



0
0
...
0
−i 0
0
...
0


(6.20)

We can then write the product of two generators (without a contraction of
row and column indices) as:

GAGA = X0X0 + X+mX−m + X−mX+m + T aT a (6.21)

Rewriting

φ → 〈φ〉+ φ (6.22)

we have ∑
A

GA〈φ〉 = X0〈φ〉+ X−m〈phi〉 (6.23)

〈φ〉
∑
A

GA = 〈φ〉X0 + 〈φ〉X+m (6.24)

We can label the components of the gluino field as

GAλA = X0Λ0 + X+mΛ+m + X−mΛ−m + T aλa (6.25)

and the quark field as

Q =

(
ω0 Q′′

i

ωm Q′mi

)
(6.26)

Q =

(
ω0 ωm

Q
′′
i Q

′
im

)
(6.27)

where Q′ is a matrix with N − 1 rows and F − 1 columns.
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We can then write the fermion mass terms generated by the Yukawa
interactions as

LFmass = −
√

2g
[(
〈φ∗〉X0Λ0 + 〈φ∗〉X+mΛ+m

)
Q (6.28)

−Q
(
X0Λ0〈φ∗+〉X−mΛ−m〈φ∗+〉

)
+ h.c.

]
(6.29)

= −gv

√N − 1
N

(
ω0Λ0 − ω0Λ0

)
(6.30)

+ωmΛ+m − ωmΛ−m + h.c.

 (6.31)

So we have a Dirac fermion (Λ0, 1√
2
(ω0 − ω0)) with mass gv

√
2(N−1)

N , two
Dirac fermions (Λ+m, ωm), (Λ−m,−ωm)) with mass gv, and massless Weyl
fermions Q′, Q

′, Q′′, Q
′′, and 1√

2
(ω0 + ω0)).

φ =

(
h φ′′i

Hm φ′mi

)
(6.32)

φ =

(
h H

m

φ
′′
i φ

′
im

)
(6.33)

where φ′ is a matrix with N − 1 rows and F − 1 columns.

Vmass =
g2

2

[
〈φ∗〉(X0 + X+m)φ + φ∗(X0 + X−m)〈φ〉 (6.34)

−〈φ〉(X0 + X+m)φ∗ − φ(X0 + X−m)〈φ∗〉
]

(6.35)

g2

2

[
(N − 1)2

2(N2 −N)

(
h + h∗ − (h∗ + h

)2
(6.36)

+(Hm −H
∗m)(H∗m −H

m)

]
(6.37)

Choose a new basis for the scalar field that diagonalizes the mass matrix:

H+m =
1√
2
(Hm −H

∗m) (6.38)
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H−m =
1√
2
(H∗m −H

m) (6.39)

π+m =
1√
2
(Hm + H

∗m) (6.40)

π−m =
1√
2
(H∗m + H

m) (6.41)

h0 = Re(h− h) (6.42)
π0 = Im(h− h) (6.43)

Ω =
1√
2
(h + h) (6.44)

(6.45)

So

Vmass = g2v2
[
N − 1

N
(h0)2 + H+mH−m

]
(6.46)

Thus we have a real scalar h0 with mass gv
√

2(N − 1)/N a complex scalar
H+m (and it’s conjugate H−m) with mass gv and a massless complex scalar
Ω. The π’s will form the longitudinal components of the massive gauge
bosons. They can be removed by going to Unitary gauge (i.e. by performing
a gauge transformation exp(iX · π)).

We can write the gauge fields as:

GBAB
µ = X0W 0

µ + X+mW+m
µ + X−mW−m

µ + T aAa
µ (6.47)

LA2φ2 = g2AA
µ AB

ν gµν〈φ∗〉GAGB〈φ〉
= g2gµν〈φ∗〉(X0W 0

µX0W 0
ν + X+mW+m

µ X−mW−m
ν + X−mW−m

µ X+mW+m
ν )〈φ〉

= g2v2gµν
(

N − 1
2N

W 0
µW 0

ν +
1
2
W+m

µ W−m
ν

)
(6.48)

Since there is an identical term arising from L
A2φ

2 we have a gauge boson

W 0
µ with mass gv

√
2(N − 1)/N , a pair of gauge bosons W+m

µ and W−m
µ with

mass gv, and the massless gauge bosons Aa
µ of SU(N − 1). As expected all

the particles fall into supermultiplets.
To summarize: for v = 0 we have the massless fields:

SU(N) SU(F ) SU(F )
Q 1
Q 1
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for v 6= 0 we have massive states:

SU(N − 1) SU(F − 1) SU(F − 1)
W 0 1 1 1
W 1 1
W 1 1

Where the massive vector supermultiplet W 0 = (W 0
µ , h0,Λ0, 1√

2
(ω0 − ω0))

has mass

mW 0 = gv

√
2(N − 1)

N
(6.49)

and the massive vector supermultiplets W+m = (W+m
µ ,H+m,Λ+m, ωm) and

W−m = (W−m
µ ,H−m,Λ−m, ωm) have mass

mW± = gv. (6.50)

We also have the massless states:

SU(N − 1) SU(F − 1) SU(F − 1)
Q′ 1
Q
′ 1

Q′′ 1 1
Q
′′ 1 1

S 1 1 1

Where the singlet chiral supermultiplet S is ( 1√
2
(h + h), 1√

2
(ω0 + ω0). In-

cluding the gluons (and gluinos) we have for both cases (v = 0 and v 6= 0)
2(N2− 1)+4FN boson degrees of freedom (and of course the same number
of fermion degrees of freedom).
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